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ABSTRACT. Bio-oil is a renewable energy source with high oxygen levels, and anisole is a chemical widely employed in 
research to represent it. Catalytic hydrodeoxygenation (HDO) reduces the oxygen content.  A catalyst known as nickel-
modified HZSM-5 has shown promising results for HDO. Meanwhile, catalyst efficiency depends on the Ni/HZSM-5 ratio. 
So, this study aims to determine how the Ni/HZSM-5 ratio influences the catalyst's properties, activity, and selectivity in anisole 
HDO. The Ni/HZSM-5 catalyst was made using the wet impregnation method with various ratios of Ni/HZSM-5. The catalysts 
were analyzed for their morphology using scanning electron microscopy-energy-dispersive X-ray (SEM-EDX). The diffraction 
patterns were studied using X-ray diffraction (XRD). Surface area and porosity were determined through gas sorption analysis 
(GSA). Then, the acidity strength was evaluated via temperature-programmed ammonia desorption (NH3-TPD). The 
characterization results show Ni was successfully impregnated and distributed evenly in HZSM-5 without changing the 
primary structure. Adding Ni metal to HZSM-5 increases the surface area of the catalyst but reduces its acid strength. The 
catalytic performance of the catalysts was then evaluated in a flow reactor at 400 °C, using 15 mL/min H2 gas. The liquid 
products of the reaction were analyzed using gas chromatography-mass spectroscopy (GC-MS). The results of the catalytic 
performance show that Ni4.5/HZSM-5 has the highest catalytic activity in anisole conversion. At the same time, Ni6.4/HZSM-
5 shows the highest selectivity towards benzene-toluene-xylene (BTX). 
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INTRODUCTION 

 Bio-oil is an alternative renewable energy derived 
from the pyrolysis of biomass. As a fuel, bio-oil needs 
improvement through, among others, the HDO 
method, which can remove the oxygen contained 
therein. Since its structure has a high complexity, 
anisole which has a simpler structure but is still similar 
to the bio-oil structure needs to be taken as an 
approach. Catalysts play an important role in the 
HDO reaction because they provide active sites in 
vacancies, active metals, Bronsted acid sites, or Lewis 
acids, which can activate oxygenated groups 
belonging to the target compound (He & Wang, 2012; 
Rogers & Zheng, 2016).  

Metal-based catalysts, often first transition metals 
like Ni, are required for the HDO process. The HDO 
reaction necessitates metal-based catalysts, often first 
transition metals such as Ni. Triggers based on nickel 
are relatively affordable and have strong catalytic 
activity (Jin et al., 2014). Furthermore, Ni can activate 
hydrogen and strongly block polymerization 
hydrocarbons in the HDO process (Li et al., 2017). 
Metal-support catalysts are commonly used in catalysis 

to increase surface area and prevent deactivation 
(Botas et al., 2012; Zhang et al., 2018). One of the 
excellent supports is zeolite due to its large surface 
area, high heat resistance, selective pores, large 
adsorption capacity, and acidity that can be controlled 
(Buzetzki et al., 2011; Rahimi & Karimzadeh, 2011; 
Zhang et al., 2018)(Buzetzki et al., 2009; Rahimi & 
Karimzadeh, 2011; J. Zhang et al., 2018). The 
presence of support is particularly crucial in enhancing 
conversion in the HDO process because it contains 
Bronsted acid sites that can activate oxygen groups (He 
& Wang, 2012; Venkatesan et al., 2021; Zhang et al., 
2019). H-Zeolite Socony Mobile-5 (HZSM-5) is a 
popular zeolite due to its high thermal stability, acidity, 
and selectivity (Li et al., 2020). Our previous study also 
demonstrated that HZSM-5 type zeolite has the highest 
activity and selectivity for HDO anisole compared to 
mordenite and Indonesian-activated natural zeolite 
(Nugrahaningtyas et al., 2024). 

Ni metal on HZSM-5 primarily produces methyl 
cyclopentane and cyclohexane. These products show 
an aromatic ring saturation pathway after the initial 
hydrogenation of benzene (Li et al., 2020). The metal-
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support ratio affects the selectivity and conversion of 
the hydrodeoxygenation reaction. Several researchers 
have varied the catalyst preparation, including the 
metal-support ratio (Zhang et al., 2018; Ranga et al., 
2019). The research found that the selectivity rises with 
increasing metal loading, but the conversion 
decreases. Jin and coworkers reported a 53% benzene 
selectivity in their HDO reaction, carried out in a batch 
reactor under H2 of 3.0 MPa and a nickel-support ratio 
of 10% (Jin et al., 2014). Meanwhile, other 
researchers obtained a 100% anisole conversion and 
a 70% cyclohexane selectivity when they conducted the 
HDO reaction in a flow reactor with H2 gas and a 20% 
nickel-support ratio(Yang et al., 2014).  

Researchers used nitrogen as a carrier gas in a flow 
reactor and adjusted the nickel-HZSM-5 metal ratio by 
0.5%, 1%, or 5%. They found that a 5% nickel-ZSM-5 
catalyst had the highest BTX selectivity at 98.7%, with 
a yield of 4.3%. Meanwhile, a 0.5% nickel-HZSM-5 
catalyst yielded the highest at 33.8% in the HDO 
anisole reaction. In another study, a 5% Ni/USY 
catalyst resulted in a cyclohexane selectivity and yield 
of 82.6% and 61%, respectively, in a batch reactor 
under hydrogen pressure(Gamliel et al., 2018; J. 
Zhang et al., 2018). 

In the present work, we have investigated the effect 
of the Ni/ZSM-5 ratio on catalyst characteristics and 
HDO performance. The Ni/HZSM-5 catalyst was 
created through the wet impregnation method. 
Catalyst performance was tested in the HDO of 
anisole using a fixed-bed reactor under an H2 flow rate 
of 15 mL/minute and a reaction temperature of 400 
oC.  We have successfully identified correlations 
between catalyst properties, such as morphology, 
metal phase, diffraction pattern, texture, and acidity, 
based on their metal ratio, and the activity and 
selectivity of HDO. 

 
EXPERIMENTAL SECTION 
Materials and Instrumentation  

The materials used in this study were HZSM-5 ACS 
Material (Si/Al ratio = 26), Ni(NO3)2.6H2O (p.a 
Merck), 25% NH3 (p.a Merck), anisole (p.a Merck 
Germany without purification). Nitrogen and 
Hydrogen gas were acquired from PT SAMATOR, 
Indonesia. The prepared catalyst was then 
characterized with SEM-EDX (FEI Inspect S-50-
Ametex), XRD (Rigaku Miniflex), GSA (NOVA 1200e) 
and NH3-TPD (Micromeritics, USA). 
Preparation of catalysts.  

According to our previous work, the Ni/ZSM-5 
catalyst was produced utilizing the wet impregnation 
approach (Mazlan et al., 2022; Nugrahaningtyas et 
al., 2022; Nugrahaningtyas et al., 2022(1)). The 
catalyst was prepared by loading 1.6 mol of 
Ni(NO3)2.6H2O into 20 grams of HZSM-5. The 
subsequent procedure entails adding double-distilled 
water to HZSM-5 until the solution volume reaches 
200 mL. The mixture is then refluxed at 30°C for 16 

hours, followed by a temperature increase to 80°C for 
an additional 4 hours. Finally, the mixture is 
evaporated with a rotary evaporator until it becomes 
powder. 

The powder activation was carried out by 
calcination and reduction procedures. In the 
calcination process, the Ni/HZSM-5 catalyst is heated 
at a temperature of 550 °C for 4 hours, and N2 gas is 
supplied at a rate of 15 mL/minute at a pressure of 1 
atmosphere. The next step is reduction by heating at a 
temperature of 400 °C for 2 hours under H2 gas at a 
10 mL/minute flow rate. The catalyst obtained is called 
Ni1.6/HZSM-5. The same process was carried out to 
obtain Ni4.5/HZSM-5 and Ni6.4/HZSM-5 catalysts. The 
catalysts were analyzed using various equipment in a 
series of analyses. Morphological and metal 
dispersion studies were performed using SEM-EDX, 
XRD, GSA, and NH3-TPD.  

The samples were analyzed using SEM to examine 
their morphology. The results were presented as 
images that showed the differences in HZSM-5 before 
and after combining it with Ni metal. These images 
revealed the presence of Ni metal on the surface of 
HZSM-5. Element mapping was used to determine the 
distribution of Ni metal on the surface, and the metal 
content was determined based on EDX data. 

Analysis of diffraction patterns obtained by XRD. 
The data show certain 2θ peaks from samples of 
HZSM-5 and Ni/HZSM-5. The diffractogram pattern 
of the catalyst was compared to various ICSD 
standards using Rietica software and the Le Bail 
technique (Nugrahaningtyas et al., 2022; Sabiilagusti 
et al., 2021; Tamer, 2013; Toraya, 2016; Will, 2006). 
The ICSD standards that used were: #61010 for 
HZSM-5, ICSD #53807 for Ni, and ICSD #24014 for 
NiO. The closeness of the Rp (residual percentage) 
and Rwp (residual weight percentage) values to zero 
indicates the suitability of the diffractogram pattern to 
the standard used. This match determines the type of 
metal phase present in the catalyst. The molar weight 
percentage has been calculated using an equation 
based on previous research results(Will, 2006). 

𝑤𝑝 =
𝑆𝑝(𝑍𝑀𝑉)𝑝

(
∑ 𝑆𝑗(𝑍𝑀𝑉)𝑗𝑗

𝜏𝑗
⁄ ) 𝜏𝑝

 

The formula for the relative weight fraction of 
phase p in a mixture of j phases is represented by wp. 
In the refinement process, S, Z, M, and V are the 
Rietveld scale factors. Z represents the number of 
formula units per unit cell, mass of the formula unit 
and the unit cell volume. τj or τp represents the particle 
absorption factor for phase j and p. 

The GSA was used to conduct surface area and 
porosity measurements. The tube was degassed at 
300°C for 3 hours, then weighed and inserted into the 
micrometrics port. Analysis was carried out with liquid 
nitrogen as a probe molecule. BET and t-plot methods 
were used to measure specific surface area, micropore 
surface area, outer surface area, total pore volume, 
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and average pore radius. These measurements are 
based on isotherm adsorption data, which involves a 
monolayer of molecules on the adsorbent surface. The 
data obtained are changes in pressure (P/Po) and 
volume of N2 gas(Buttersack et al., 2016; Naderi, 
2015; Tran et al., 2018).   

The NH3-TPD instrument was used to determine the 
acidity of the Ni/HZSM-5 catalyst at different 
metal/support ratios. NH3-TPD analysis entails heating 
the sample to 350°C for 60 minutes using a stream of 
helium gas. Ammonia adsorption (5% in He) was 
performed at 100°C for 30 minutes, followed by 30 
minutes of washing with He. NH3-TPD was then heated 
to 100-700°C at 10 °C/min and maintained for 10 
minutes at 700°C. The NH3 desorption peak area was 
determined using the TCD signal to estimate the 
sample's acidity. The number of acid sites is calculated 
by measuring the ammonia molecules adsorbed on 
the sample (Zhang et al., 2018). The NH3 desorption 
peak at low temperatures is often induced by adsorbed 
Lewis acid sites, while the peak at 400-500°C is 
caused by adsorbed Brønsted acid sites (Chen et al., 
2018; Chen et al., 2019; Nugrahaningtyas et al., 
2024). 

Catalytic Performance Test 
The catalyst was formed into 0.5-gram pellets and 

heated at 110°C for 3 hours. The catalyst is placed in 
the reactor and heated to 400 ºC with H2 flowing at a 
5 mL/minute rate. Figure S1 (supplementary file) 
shows a schematic of the reactor. Anisole was 
introduced into the feed reactor in the following stage 
and purged with H2 for 5 minutes. The feed reactor 
was heated to 155 ºC, with an H2 gas flow rate of 15 
mL/min. The acquired products were examined with 
GC-MS to determine the type and quantity of the 
product. The percentage of total yield, conversion, and 
product selectivity were estimated using modified 
formulas from earlier studies (El-Hakam et al., 2013; 

Nugrahaningtyas et al., 2019; Choo et al., 2020; 
Yusuf et al., 2023). The formulas below were used to 
calculate the anisole conversion rate (Xanisole), product 
yield (Yi), and selectivity (Si). 

𝑋𝑎𝑛𝑖𝑠𝑜𝑙𝑒  (𝑤𝑡%) =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑛𝑖𝑠𝑜𝑙𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑛𝑖𝑠𝑜𝑙𝑒 𝑖𝑛 𝑓𝑒𝑒𝑑
× 100 

Since one mol of anisole will only produce one mol of 
benzene, toluene or xylene. 

 𝑌𝑖(𝑤𝑡%) =
𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑛𝑖𝑠𝑜𝑙𝑒 𝑖𝑛 𝑓𝑒𝑒𝑑
× 100 

𝑆𝑖(%) =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑛𝑖𝑠𝑜𝑙𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
× 100% 

 
RESULT AND DISCUSSION 
Morphological Analysis 

Figure 1 shows the morphological analysis results 
for samples at 5,000x and 50,000x magnification. 
The catalysts identified had irregular shapes and 
variable particle sizes. These findings follow previous 
research stating that adding metal did not change the 
shape of HZSM-5 (Niu et al., 2014). When metal is 
added, the surface and form of the Ni/HZSM-5 
catalysts become heterogeneous relative to the 
support (HZSM-5). The appearance of a shining white 
stain after adding metal indicates Ni is impregnated.   

Diffraction Pattern Analysis 
The diffraction patterns of HZSM-5 and Ni/HZSM-

5 are similar (Figure 2). The typical peak of Ni is not 
visible in Figure 2, indicating that Ni is evenly 
dispersed in HZSM-5(Niu et al., 2014). The addition 
of Ni is found to have a slight influence on the 
diffraction pattern of HZSM-5. The peaks that have 
undergone specific changes have been marked with 
an asterisk (*). The characteristic peak intensity of the 
material decreases slightly, suggesting an altered 
behavior of the material due to the presence of Ni. The 
refinement analysis also supports the results of the 
diffraction pattern analysis. 

 

 
 

Figure 1. Morphology and element mapping for HZSM-5, Ni1.6/HZSM-5, Ni4.5/HZSM-5, and Ni6.4/HZSM-5. 
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Figure 2. Diffraction patterns of the HZSM-5, Ni1.6/HZSM-5, Ni4.5/HZSM-5, and Ni6.4/HZSM-5. 

 

Table 1. Refinement results using HZSM-5 standard (ICSD #61010). 

Cell Parameters HZSM-5 Ni1.6/HZSM-5 Ni4.5/HZSM-5 Ni6.4/HZSM-5 

Crystal Structure Orthorhombic Orthorhombic Orthorhombic Orthorhombic 
Space Group P n 21 a P n 21 a P n 21 a P n 21 a 
a (Å) 20.16 20.21 20.25 20.15 

b (Å) 19.93 19.95 19.97 19.89 

c (Å) 13.38 13.39 13.41 13.35 

angles (o) α=β=γ=90 α=β=γ=90 α=β=γ=90 α=β=γ=90 

Cell Volume (Å3) 5381.91 5399.85 5428.29 5354.90 
Z 1 1 1 1 

Rp (%) 5.67 5.62 5.05 5.04 

Rwp (%) 5.47 6.08 5.00 5.41 

 

Table 2. The molar weight percentage of the metal phase on the catalyst 

Phase (ICSD #) 
Molar Weight Percentage (%) 

Ni1.6/HZSM-5 Ni4.5/HZSM-5 Ni6.4/HZSM-5 

HZSM-5 (#61010) 91.82 92.15 92.03 

Ni (#53807) 2.99 3.04 3.00 
NiO (#24014) 5.19 4.81 4.97 

 
Refinement analysis is also used to determine the 

metal phase in the catalyst (Table 2). The refinement 
results show that metal oxides are more dominant than 
the metal element phase(Zheng et al., 2020). 

Based  on the  residual  factor  values  (Rp and 
Rwp), evaluate the appropriateness of the HZSM-5 
standards (Table 1). The residual factor values 
decrease if the phases match the XRD pattern. The 
residual  factor  values  (Rp  and  Rwp) were 5.67% 
and 5.47%, respectively. It demonstrates that the 
HZSM-5 employed met the HZSM-5 criteria (ICSD 
#61010). Apart from that, it is also known that the 
diffraction  pattern  of HZSM-5  is similar,  but  there 
is a  slight  decrease  in  the characteristic peak 

intensity  of  HZSM-5,  which is thought to be due to 
the influence of the addition of Ni. 

Catalyst Porosity 
Overall, the surface area of HZSM-5 increases 

after the addition of metals (Figure 3). When metals 
are added to a support, and the surface area of the 
support increases, it suggests that the addition of 
metals doesn't lead to the accumulation of metals on 
the support surface or blockage of the pores by metals. 
Instead, the increase in specific surface area indicates 
that the metal has been evenly dispersed across the 
entire support surface, which allows the catalyst to 
activate more reactants and produce a greater 
amount of products. Meanwhile, the Ni/HZSM-5 
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catalyst exhibits a smaller micropore surface area 
compared to HZSM-5. Therefore, it is suspected that 
the addition of metals leads to the closure of some 
micropores. The increase in outer surface area 
indicates that nickel metal is bound to the outer surface 
of HZSM-5. Adding nickel metal, which supplies new 
active sites, helps reduce the loss of catalytic activity 
with a decrease in surface area(Zheng et al., 2020). 
Meanwhile,  the  average  pore size  and pore volume  

values tend to increase after the impregnation of Ni 
into HZSM-5. An increase in the average pore size 
indicates that the presence of metal causes the 
formation of new pores with a larger size(Trisunaryanti 
et al., 2010). In addition, calcination and reduction 
can open the pores of each catalyst, thereby 
increasing its volume. The adsorption isotherm graph 
data with the N2 gas molecule probe also supports the 
surface area characteristics of the catalyst (Figure 4). 
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Figure 3. Surface area and porosity of Ni1.6/HZSM-5, Ni4.5/HZSM-5, and Ni6.4/HZSM-5  catalyst. 
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Figure 4. Adsorption-desorption isotherm graph of N2 gas on catalyst. 
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Isotherm adsorption data can be utilized to 
characterize gas adsorption properties in porous 
materials (Pérez-Page et al., 2016; Sing, 2001). ZSM-
5 possesses both micro and mesopores(Zhang et al., 
2023). In this study, mesoporous ZSM-5 was utilized, 
as documented in the previous research. The N2 
adsorption-desorption isotherm graph resembles a 
type IV adsorption, it’s a characteristic of mesoporous 
materials (2–50 nm, or 0.002-0.05 µm) (Bardestani et 
al., 2019). This statement agrees with the research 
data, as documented in the previous research (Ediati 
et al., 2017; Che et al., 2019; Zhao et al., 2019; 
Eschenbacher et al., 2020; Munir and Usman, 2022). 
Mesoporous materials show potent catalytic activity in 
the HDO anisole reaction because the pore diameter 
is suitable for anisole molecules to diffuse (Arun et al., 
2015; Crawford et al., 2020). 

Acidity Analysis 
Ammonia desorption in TPD analysis was 

performed in stages at 100–850 °C temperatures (Fig 
5a). Ammonia desorption peaks at low temperatures 
indicate ammonia adsorbed on weakly acidic sites, 
while desorption peaks at high temperatures indicate 
ammonia adsorbed on stronger acid sites. Adding 
metal to HZSM-5 reduces its total acidity value due to 
metal dispersion on its surface, inhibiting the NH3 gas 
bound to its pores (Azreena et al., 2021). The support 
has a greater total acidity because metal does not 
cover the zeolite pores. Based on the amount of acid 

strength, each catalyst tends to have a dominant 
amount of weak acid strength, which shows that each 
catalyst has more Lewis acid sites than the Bronsted 
catalyst. Meanwhile, the low total acidity of Ni/HZSM-
5 is thought to be because a Lewis acid site from the 
metal has replaced the Bronsted acid site (Figure 5b). 
The presence of the Lewis acid site is indicated by the 
ammonia desorption peak at low temperatures(Al-
dughaither et al., 2014; Zheng et al., 2020). 

Catalytic Activity 
Catalytic activity can be assessed based on the total 

anisole conversion (Figure 6). The catalyst's dual 
function, deriving from both the Bronsted acid site of 
the support and the active site of the metal, suggests 
that the addition of metal could potentially enhance 
the conversion reaction. The metal aids in both the 
isomerization and hydrogenation processes. For 
instance, Ni4.5/HZSM-5 exhibits a maximum 
conversion of 31.63%, attributed to its larger surface 
area and acidity. This enhanced surface area and 
acidity facilitate better access for reactants to reach the 
active site (Shim et al., 2015). Conversely, 
Ni6.5/HZSM-5 demonstrates the lowest conversion 
compared to the other catalysts, possibly due to the 
absence of high acidity alongside the metal content 
and large surface area. Thus, it's strongly suspected 
that not all high surface areas are catalytically active. 
In the HDO anisole reaction, the acid site serves as the 
active site(Wang et al., 2010). 
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Figure 5. (a) Acid strength profile and (b) Acidity value of catalyst. 

 
Figure 6.  Product yield as a function of catalyst metal ratio. 
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The use of catalysts and the addition of metal can 
also increase the liquid products due to the increased 
pore volume after the addition of Ni. This facilitates 
the entry of anisole molecules into the catalyst pores, 
promoting increased interaction among them.  This 
aids in anisole molecules entering the catalyst pores, 
enhancing their interaction. Furthermore, during the 
anisole HDO reaction, coke forms from heavy 
product condensation(Cardó et al., 2012), while 
anisole conversion produces gas, releasing oxygen as 
CO gas (Arun et al., 2015).  

The liquid yield resulting from anisole conversion 
can be grouped into two groups, BTX compounds and 
compounds that still contain oxygen, including 
alcohols and aldehydes (intermediate compounds). 
Based on product analysis using GC-MS, each 
catalyst produces a different amount of product. 
However, the number of products yielded cannot be 
used  as  a  reference  for determining the best 
catalytic activity  because  the catalytic activity is 
assessed based on the total yield obtained. The 
product distribution of HDO anisole conversion 
compounds can be seen in Table 3. 

The anisole hydrodeoxygenation mechanism 
involves demethylation or transmethylation, followed 
by hydrogenolysis. In catalysts, nickel serves as a 
hydrogen gas dissociator, with the first hydrogen 
atom binding to nickel and subsequent hydrogen 
atoms binding to methyl groups to form methane 
(CH4). Anisole demethylation yields phenol as an 
intermediate, which is then hydrogenolyzed to 
produce benzene (Peters et al., 2015).  

Toluene and xylene are produced from the 
transmethylation reaction in anisole by removing the 
-OH group. Toluene is produced from the cresol 
compound in a hydrodeoxygenation reaction which is 
accompanied by the release of water molecules, while 
xylene is produced from the hydrodeoxygenation 
reaction in methyl benzene (Ranga et al., 2018). 
Phenol is produced together with methyl benzene due 
to the release of several methyl groups attached to Ni, 
which are then bound back into anisole compounds 
that have not been completely converted. 
Additionally, transmethylation produces a side 
product called methyl anisole (Oyedun et al., 2019). 
No methylbenzene is produced because it may have 
been completely converted to xylene by a 
transmethylation reaction followed by hydrogenolysis. 

Based on Table 3,  it  can be seen that the 
reactions that may occur during the anisole HDO 
process to form products include demethylation, 
transmethylation, and hydrogenolysis. The 
mechanism of the HDO reaction begins with H2 being 
adsorbed and activated on the metal site, whereas 
oxygenate compounds can be adsorbed and 
activated on the metal site or on the impregnating 
agent  (Figure 7). The hydrogen atom adsorbed on 
the Ni metal site will react with the adsorbed 
oxygenate  compounds,  causing the C-O bonds to 
be broken and the formation of deoxygenated 
products.  The  OH  acid  site  interacts  with the 
oxygen atom of the oxygenate compound and H2 will 
be reactivated by the metal. 

 
Table 3. Distribution of the HDO anisole product compound 

Product compound Yield (%) 

Thermal HZSM-5 Ni1.6/HZSM-5 Ni4.5/HZSM-5  Ni6.4/HZSM-5 

Benzene (C6H6) 0.752 0.268 0.246 0.457 0.469 
Toluene (C7H8) 0.059 0.562 0.624 0.881 0.957 
Xylene (C8H10) n.a 0.155 0.404 0.535 0.709 
Naphthalene (C10H8) n.a n.a 0.219 n.a n.a 
Cresol (C7H8O) n.a 2.916 2.847 3.290 2.766 
Phenol (C6H6O) 0.983 6.352 8.781 10.647 9.353 
Benzaldehyde (C7H6O) 0.786 n.a 0.683 n.a 0.159 
Methyl anisole 
(C8H10O) 

n.a 1.653 2.206 1.614 1.826 

 

 

Figure 7. Proposed reaction mechanism for HDO anisole with Ni/HZSM-5 catalyst 
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Figure 8.  Product selectivity of various catalysts (a) BTX and (b) Oxygenate compounds. 

 
Catalyst Selectivity 

The use of the catalysts in this study resulted in 
different levels of selectivity against BTX (Figure 8). The 
addition of Ni to HZSM-5 increases the selectivity 
against BTX. The more metal contained, the higher the 
selectivity value. Ni6.4/HZSM-5 has the highest amount 
of Ni compared to the other ones so that it produces 
the highest selectivity against BTX. 

Pore size and acidity characteristics determine how 
anisole interacts with the catalyst, influencing the 
activation of anisole bonds. Anisole can adsorb onto 
the catalyst surface in three orientations: via epoxy 
oxygen, through the benzene ring horizontally, or 
vertically. Each orientation affects the activation of 
epoxy groups and phi bonds within the anisole, 
leading to variations in the catalyst properties that 
influence the range of anisole HDO products. 

BTX are oxygen-free compounds which indicate the 
effectiveness of the anisole HDO reaction. They can be 
formed through several reaction routes, including 
direct deoxygenation and transalkylation-
deoxygenation stepwise reactions(Asadieraghi et al., 
2014; Gollakota et al., 2016; Gonalez-Borja & 
Resasco, 2011; Zhu et al., 2010). Acidic catalysts such 
as zeolites tend to show the gradual route of anisole 
hydrodeoxygenation(Gonalez-Borja & Resasco, 2011; 
Rogers & Zheng, 2016). The activation of the epoxy 
groups of anisole on the catalyst surface is not strong 
enough to release the oxygen bound to its benzene 
ring. As compensation, anisole is converted into 
phenol, leaving behind oxygenate compounds. Figure 
8 presents the catalyst selectivity against products that 
still contain oxygen that are dominated by phenolic 
compounds. The phenolic products obtained are in 
accordance with the previous statement that the 
anisole hydrodeoxygenation reaction occurs in stages. 
Those are formed by a transmethylation reaction 
between two or more anisoles.  

 
CONCLUSIONS 

Based on the findings of this research, it is evident 
that the incorporation of Ni onto HZSM-5 was 
successfully accomplished, as confirmed by the 

presence of Ni on HZSM-5 according to EDS analysis. 
It was found that the structure of HZSM-5 was not 
affected by the addition of Ni, as there was no 
significant decrease in peak intensity in the XRD 
spectra of all catalysts. However, the addition of Ni 
increased the surface area and total pore volume, 
while decreasing  the total acid strength of the 
catalysts. As a result, the application of Ni/HZSM-5 
increased the  activity and selectivity of the anisole 
HDO reaction. The highest activity was observed in 
Ni4.5/HZSM-5, exhibiting the highest total anisole 
conversion, while the highest BTX selectivity was 
observed in Ni6.4/HZSM-5. 
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